
swprocess
Release 0.2.0

Joseph P. Vantassel

Jun 09, 2023

CONTENTS

1 Contents: 2

2 Indices and tables 25

Python Module Index 26

Index 27

i

swprocess, Release 0.2.0

swprocess is a Python package for surface wave processing.

swprocess supports:

• processing of active-source surface wave data (i.e., MASW),

• post-processing of passive-wavefield surface wave data (i.e., MAM) processed using Geopsy,

• combining active-source and/or passive-wavefield dispersion data from different arrays, and

• calculation of rigorous surface wave dispersion statistics.

If you use swprocess in your research or consulting please cite the following:

• Vantassel, J. P. (2021). jpvantassel/swprocess: latest (Concept). Zenodo. https://doi.org/10.5281/zenodo.
4584128

• Vantassel, J. P. & Cox, B. R. (2022). “SWprocess: a workflow for developing robust estimates of surface wave
dispersion uncertainty”. Journal of Seismology. https://doi.org/10.1007/s10950-021-10035-y

Note: For software, version specific citations should be preferred to general concept citations, such as that listed above.
To generate a version specific citation for swprocess, please use the citation tool on the swprocess archive.

This package is actively being developed, so if you do not see a feature you would like it may very well be under
development and released in the near future. To be notified of future releases, you can either watch the repository on
Github or Subscribe to releases on the Python Package Index (PyPI).

CONTENTS 1

https://doi.org/10.5281/zenodo.4584128
https://doi.org/10.5281/zenodo.4584128
https://doi.org/10.1007/s10950-021-10035-y
https://doi.org/10.5281/zenodo.4584128
https://github.com/jpvantassel/swprocess
https://pypi.org/project/swprocess/

CHAPTER

ONE

CONTENTS:

1.1 Installation

pip install swprocess or pip install swprocess --upgrade

pip will handle the rest!

1.2 API Reference

1.2.1 activetimeseries

ActiveTimeSeries class definition.

class ActiveTimeSeries(amplitude, dt, nstacks=1, delay=0)
Bases: TimeSeries

A class for working with active-source TimeSeries.

Variables

• amplitude (ndarray) – Recording’s amplitude, one per sample.

• dt (float) – Time step between samples in seconds.

__init__(amplitude, dt, nstacks=1, delay=0)
Initialize an ActiveTimeSeries object.

Parameters

• amplitude (array-like) – Recording’s amplitude, one per sample. The first value is as-
sociated with time=0 seconds and the last is associate with time=(len(amplitude)-1)*dt
seconds.

• dt (float) – Time step between samples in seconds.

• nstacks (int, optional) – Number of stacks used to produce amplitude, default is 1.

• delay (float, optional) – Delay to the start of the record in seconds, default is 0.

Returns
ActiveTimeSeries – Intialized ActiveTimeSeries object.

static crosscorr(a, b, correlate_kwargs=None, exclude='nsamples')
Cross correlation of two ActiveTimeSeries objects.

Parameters

2

swprocess, Release 0.2.0

• a (ActiveTimeSeries) – Base ActiveTimeSeries to which b is correlated.

• b (ActiveTimeSeries) – ActiveTimeSeries correlated to a.

• correlate_kwargs (dict, optional) – dict of keyword argument for the correlate function,
see scipy.signal.correlate for details.

• exclude (tuple, optional) – tuple of attributes to exclude in an is_similar comparison, de-
fault is (‘nsamples’).

Returns
ndarray – Containing the cross correlation.

static crosscorr_shift(a, b, exclude=None)
Shift b so that it is maximally corrlated with a.

Parameters

• a (ActiveTimeSeries) – ActiveTimeSeries to which b will be correlated. a should be similar
to b.

• b (ActiveTimeSeries) – ActiveTimeSeries which will be shifted so that it is maximally cor-
related with a. b should be similar to a.

• exclude (tuple, optional) – tuple of attributes to exclude in an is_similar comparison, de-
fault is (‘nsamples’).

Returns
ndarray – Which represents the stack of the correlated and padded b onto a.

property delay

property df

classmethod from_activetimeseries(activetimeseries)

classmethod from_cross_stack(a, b)
Create ActiveTimeSeries from cross-correlation.

Cross-correlate b to a and shift b such that it is maximally correlated with a. Then stack the shifted version
of b onto a.

Parameters

• a (ActiveTimeSeries) – ActiveTimeSeries to which b will be correlated and stacked. a should
be similar to b.

• b (ActiveTimeSeries) – ActiveTimeSeries which will be correlated with and stacked onto a.
b should be similar to a.

Returns
ActiveTimeSeries – Which represents the correlated and potentially zero-padded b stacked
onto a.

classmethod from_trace(trace, nstacks=1, delay=0)
Create ActiveTimeSeries from a Trace object.

This method is more general than ActiveTimeSeries.from_trace_seg2(), as it does not attempt to
extract any metadata from the Trace object.

Parameters

• trace (Trace) – Refer to obspy documentation for more information.

1.2. API Reference 3

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlate.html
https://github.com/obspy/obspy/wiki

swprocess, Release 0.2.0

• nstacks (int, optional) – Number of stacks the time series represents, default is 1, signifying
a single unstacked time record.

• delay (float {<=0.}, optional) – Denotes the pre-event delay, default is zero, meaning no
pre-event noise was recorded.

Returns
ActiveTimeSeries – Initialized with information from trace.

classmethod from_trace_seg2(trace)
Initialize from a SEG2 Trace object.

This method is similar to ActiveTimeSeries.from_trace() except that it extracts additional informa-
tion from the Trace header. So only use this method if you have a seg2 file and the header information is
correct.

Parameters
trace (Trace) – Trace object from a correctly written seg2 file.

Returns
ActiveTimeSeries – Instantiated with seg2 file.

property multiple

property n_stacks

property nstacks

stack_append(timeseries)
Stack (i.e., average) a new timeseries onto the current one.

Parameters
timeseries (ActiveTimeSeries) – ActiveTimeSeries to be stacked onto the current object.

Returns
None – Updates the attributes amplitude and nstacks.

Raises
ValueError – If timeseries is not an ActiveTimeSeries or it cannot be stacked to the current
object (i.e., the two are dissimilar).

property time

Time vector for ActiveTimeSeries.

trim(start_time, end_time)
Trim in the interval [start_time, end_time].

For more information see sigpropy.TimeSeries.trim().

Parameters

• start_time (float) – New time-zero in seconds.

• end_time (float) – New end-time in seconds.

Returns
None – Updates the attributes nsamples and delay.

zero_pad(df)
Append zeros to amp to achieve a desired frequency step.

Note for exact results, 1/(df*dt) must be an integer, otherwise a df close to the desired df will be returned.

1.2. API Reference 4

swprocess, Release 0.2.0

Parameters
df (float) – Desired frequency step in Hertz.

Returns
None – Instead modifies attributes: amp, nsamples, multiple.

Raises
ValueError – If df < 0 (i.e., non-positive).

1.2.2 array1d

Array1D class definition.

class Array1D(sensors, source)
Bases: object

A class to organize the information for a 1D (linear) array.

Variables

• sensors (list of Sensor1C) – Sensors which compose the 1D array.

• source (Source) – Source for active shot gather.

__init__(sensors, source)
Initialize from an iterable of Sensor1C`s and a `Source.

Parameters

• sensors (iterable of Sensor1c) – Iterable of initialized Sensor1C objects.

• source (Source) – Initialized Source object.

Returns
Array1D – Initialized Array1D object.

property array_center_distance

auto_pick_first_arrivals(algorithm='threshold', **algorithm_kwargs)

classmethod from_array1d(array1d)
Create a deep copy of an existing Array1D object.

classmethod from_files(fnames, map_x=<function Array1D.<lambda>>, map_y=<function
Array1D.<lambda>>)

Initialize an Array1D object from one or more data files.

This classmethod creates an Array1D object by reading the header information in the provided file(s). Each
file should contain multiple traces where each trace corresponds to a single receiver. Currently supported
file types are SEG2 and SU.

Parameters

• fnames (str or iterable) – File name or iterable of file names. If multiple files are provided
the traces are stacked.

• map_x, map_y (function, optional) – Convert x and y coordinates using some function,
default is not transformation. Can be useful for converting between coordinate systems.

Returns
Array1D – Initialized Array1d object.

1.2. API Reference 5

swprocess, Release 0.2.0

Raises
TypeError – If fnames is not of type str or iterable.

interactive_mute(mute_location='both', window_kwargs=None, waterfall_kwargs=None)
Interactively select source window boundary.

Parameters

• mute_location ({“before”, “after”, “both”}, optional) – Select which part of the record
to mute, default is “both” indicating two lines defining the source window boundary will
be required.

• window_kwargs (dict, optional) – Dictionary of keyword arguments defining the signal
window, see scipy.singal.windows.tukey for available options.

• waterfall_kwargs (dict, optional) – Dictionary of keyword arguments defining how the
waterfall should be created, see :meth Array1D.waterfall for the available options.

Returns
tuple – Of the form (signal_start, signal_end).

is_similar(other)
Check if other is similar to self.

property kres

The array’s resolution wavenumber.

manual_pick_first_arrivals(waterfall_kwargs=None)
Allow for interactive picking of first arrivals.

Parameters
waterfall_kwargs (dict, optional) – Dictionary of keyword arguments for meth: <Ar-
ray1D.waterfall>, default is None indicating default keyword arguments.

Returns
Tuple – Of the form (distance, picked_time)

mute(signal_start=None, signal_end=None, window_kwargs=None)
Mute traces outside of a narrow signal window.

Parameters

• signal_start, signal_end (iterable of floats, optional) – Two points to define start and stop
of the narrow signal window of the form ((pt1_dist, pt1_time), (pt2_dist, pt2_time)), default
is None .

• window_kwargs (dict, optional) – Dictionary of keyword arguments defining the signal
window, see scipy.singal.windows.tukey for available options.

Returns
None – Modifies the object internal state.

property nchannels

Number of Sensors in the array.

property offsets

Receiver offsets relative to source position as list.

plot(ax=None, sensor_kwargs=None, source_kwargs=None)
Plot a schematic of the Array1D object.

1.2. API Reference 6

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.tukey.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.tukey.html

swprocess, Release 0.2.0

The schematic shows the position of the receivers and source and lists the total number of receivers and
their spacing.

Parameters

• ax (Axis, optional) – Axes on which to plot, default is None indicating a Figure and Axis
will be generated on-the-fly.

• sensor_kwargs, source_kwargs (None, dict, optional) – Kwargs for matplotlib.pyplot.plot
to control the plotting of the sensors and source, respectively. Default is None, indicating
the predefined default values will be used.

Returns
Tuple – Of the form (fig, ax) where fig is the figure object and ax the axes object on which the
schematic is plotted, if ax=None.

position(normalize=False)
Array’s sensor positions as list.

Parameters
normalize (bool, optional) – Determines whether the array positions are shifted such that the
first sensor is located at x=0.

property spacing

timeseriesmatrix(detrend=False, normalize='none')
Sensor amplitudes as 2D ndarray.

Parameters

• detrend (bool, optional) – Boolean to control whether a linear detrending operation is
performed, default is False so no detrending is performed.

• normalize ({“none”, “each”, “all”}, optional) – Enable different normalizations to be
performed. “each” normalizes each traces by its maximum. “all” normalizes all traces by
the same maximum. Default is “none” so no normalization is performed.

Returns
ndarray – Of shape (nchannels, nsamples) where each row is the amplitude of a given sensor.

to_file(fname, ftype='su')

trim(start_time, end_time)
Trim time series belonging to each Sensor1C.

Parameters
start_time, end_time (float) – Desired start time and end time in seconds measured from the
point the acquisition system was triggered.

Returns
None – Updates internal attributes.

trim_offsets(min_offset, max_offset)
Remove sensors outside of the offsets specified.

Parameters
min_offset, max_offset (float) – Specify the minimum and maximum allowable offset in
meters.

Returns
None – Updates internal attributes.

1.2. API Reference 7

https://matplotlib.org/3.3.1/api/_as_gen/matplotlib.pyplot.plot.html

swprocess, Release 0.2.0

waterfall(ax=None, time_ax='y', amplitude_detrend=True, amplitude_normalization='each',
amplitude_scale=None, position_normalization=False, plot_kwargs=None)

Create waterfall plot for this array setup.

Parameters

• ax (Axes, optional) – Axes on which to plot, default is None indicating a Figure and Axes
will be generated on-the-fly.

• time_ax ({‘x’, ‘y’}, optional) – Denotes the time axis, ‘y’ is the default.

• amplitude_detrend (bool, optional) – Boolean to control whether a linear detrending op-
eration is performed, default is False so no detrending is performed.

• amplitude_normalization ({“none”, “each”, “all”}, optional) – Enable different nor-
malizations including: “each” which normalizes each traces by its maximum, “all” which
normalizes all traces by the same maximum, and “none” which perform no normalization,
default is “each”.

• amplitude_scale (float, optional) – Factor by which each trace is multiplied, default is
None which uses a factor equal to half the average receiver receiver spacing.

• position_normalization (bool, optional) – Determines whether the array positions are
shifted such that the first sensor is located at x=0.

• plot_kwargs (None, dict, optional) – Kwargs for matplotlib.pyplot.plot to control the style
of each trace, default is None.

Returns
Tuple – Of the form (fig, ax) where fig is the figure object and ax the axes object on which the
schematic is plotted, if ax=None.

zero_pad(df)
Append zero to sensors to achieve a desired frequency step.

Parameters
df (float) – Desired linear frequency step in Hertz.

Returns
None – Instead modifies sensors.

class Array1DwSource(sensors, source)
Bases: Array1D

classmethod from_files(fnames_rec, fnames_src, src_channel, map_x=<function
Array1DwSource.<lambda>>, map_y=<function
Array1DwSource.<lambda>>)

Initialize an Array1D object from one or more data files.

This classmethod creates an Array1D object by reading the header information in the provided file(s). Each
file should contain multiple traces where each trace corresponds to a single receiver. Currently supported
file types are SEG2 and SU.

Parameters

• fnames (str or iterable) – File name or iterable of file names. If multiple files are provided
the traces are stacked.

• map_x, map_y (function, optional) – Convert x and y coordinates using some function,
default is not transformation. Can be useful for converting between coordinate systems.

1.2. API Reference 8

https://matplotlib.org/3.3.1/api/_as_gen/matplotlib.pyplot.plot.html

swprocess, Release 0.2.0

Returns
Array1D – Initialized Array1d object.

Raises
TypeError – If fnames is not of type str or iterable.

xcorrelate(vmin=None, vmax=None)

1.2.3 masw

Masw class definition.

class Masw

Bases: object

Customizable Multichannel Analysis of Surface Waves workflow.

Convenient customer-facing interface for implementing different and extensible MASW processing workflows.

static create_settings_dict(workflow='time-domain', trim=False, trim_begin=0.0, trim_end=1.0,
mute=False, method='interactive', window_kwargs=None, pad=False,
df=1.0, transform='fdbf', fmin=5, fmax=100, vmin=100, vmax=1000,
nvel=200, vspace='linear', weighting='sqrt', steering='cylindrical',
snr=False, noise_begin=-0.5, noise_end=0.0, signal_begin=0.0,
signal_end=0.5, pad_snr=True, df_snr=1.0, min_offset=0,
max_offset=inf)

Create settings dict using function arguments.

See Masw.create_settings_file() for details.

static run(fnames, settings, map_x=<function Masw.<lambda>>, map_y=<function Masw.<lambda>>)
Run an MASW workflow from SU or SEGY files.

Create an instance of an Masw object for a specific Masw workflow. Note that each file should contain
multiple traces where each trace corresponds to a single receiver. The header information for these files
must be correct and readable. Currently supported file types are SEGY and SU.

Parameters

• fnames (str or iterable of str) – File name or iterable of file names.

• settings_fname (str) – JSON settings file detailing how MASW should be performed. See
meth: Masw.create_settings_file() for more information.

• map_x, map_y (function, optional) – Functions to convert the x and y coordinates of
source and receiver information, default is no transformation. Useful for converting be-
tween coordinate systems.

Returns
AbstractTransform-like – Initialized subclass (i.e., child) of AbstractTransform.

Raises
TypeError – If fnames is not of type str or iterable.

class MaswXcorr

Bases: Masw

static run(fnames_rec, fnames_src, src_channel, settings, map_x=<function MaswXcorr.<lambda>>,
map_y=<function MaswXcorr.<lambda>>)

1.2. API Reference 9

swprocess, Release 0.2.0

Run an MASW workflow from SU or SEGY files.

Create an instance of an Masw object for a specific Masw workflow. Note that each file should contain
multiple traces where each trace corresponds to a single receiver. The header information for these files
must be correct and readable. Currently supported file types are SEGY and SU.

Parameters

• fnames (str or iterable of str) – File name or iterable of file names.

• settings_fname (str) – JSON settings file detailing how MASW should be performed. See
meth: Masw.create_settings_file() for more information.

• map_x, map_y (function, optional) – Functions to convert the x and y coordinates of
source and receiver information, default is no transformation. Useful for converting be-
tween coordinate systems.

Returns
AbstractTransform-like – Initialized subclass (i.e., child) of AbstractTransform.

Raises
TypeError – If fnames is not of type str or iterable.

1.2.4 maswworkflows

Masw workflow class definitions.

class AbstractMaswWorkflow(fnames=None, settings=None, map_x=None, map_y=None)
Bases: ABC

Abstract base class (ABC) defining an MASW workflow.

__init__(fnames=None, settings=None, map_x=None, map_y=None)
Perform initialization common to all MaswWorkflows.

calculate_snr()

check()

Check array is acceptable for WavefieldTransform.

detrend()

Perform linear detrend operation.

mute()

Mute record in the time domain.

pad()

Pad record in the time domain.

abstract run()

select_noise()

Select a portion of the record as noise.

select_signal()

Select a portion of the record as signal.

trim_offsets()

Remove receivers outside of the offset range.

1.2. API Reference 10

swprocess, Release 0.2.0

trim_time()

Trim record in the time domain.

class FrequencyDomainMaswWorkflow(fnames=None, settings=None, map_x=None, map_y=None)
Bases: AbstractMaswWorkflow

Stack in the frequency-domain.

run()

class SingleMaswWorkflow(fnames=None, settings=None, map_x=None, map_y=None)
Bases: TimeDomainWorkflow

Perform transform on a single time-domain record.

run()

class TimeDomainMaswWorkflow(fnames=None, settings=None, map_x=None, map_y=None)
Bases: TimeDomainWorkflow

Stack in the time-domain.

class TimeDomainWorkflow(fnames=None, settings=None, map_x=None, map_y=None)
Bases: AbstractMaswWorkflow

run()

class TimeDomainXcorrMaswWorkflow(fnames_rec=None, fnames_src=None, src_channel=None,
settings=None, map_x=None, map_y=None)

Bases: AbstractMaswWorkflow

Stack in the time-domain and xcorr.

__init__(fnames_rec=None, fnames_src=None, src_channel=None, settings=None, map_x=None,
map_y=None)

Perform initialization common to all MaswWorkflows.

run()

1.2.5 peaks

Peaks class definition.

class Peaks(frequency, velocity, identifier='0', **kwargs)
Bases: object

Class for handling dispersion peaks.

Variables

• frequency (ndarray) – Frequency associate with each peak.

• velocity (ndarray) – Velocity associate with each peak.

• identifier (str) – Used to uniquely identify the Peaks object.

• attrs (list) – List of strings describing Peak attributes.

1.2. API Reference 11

swprocess, Release 0.2.0

__init__(frequency, velocity, identifier='0', **kwargs)
Create Peaks from a iterable of frequencies and velocities.

Parameters

• frequency, velocity (iterable of floats) – Frequency and velocity (one per peak), respec-
tively.

• identifier (str, optional) – String to uniquely identify the provided Peaks, default is “0”.

• **kwargs (kwargs) – Optional keyword argument(s) these may include additional infor-
mation about the dispersion peaks such as: azimuth, ellipticity, power, and noise. Will
generally not be entered directly.

Returns
Peaks – Instantiated Peaks object.

axes_defaults = {'azimuth': {'label': 'Azimuth (deg)', 'scale': 'linear'},
'frequency': {'label': 'Frequency (Hz)', 'scale': 'log'}, 'slowness': {'label':
'Slowness (s/m)', 'scale': 'log'}, 'velocity': {'label': 'Velocity (m/s)',
'scale': 'linear'}, 'wavelength': {'label': 'Wavelength (m)', 'scale': 'log'}}

property azimuth

property ellipticity

property extended_attrs

List of available Peaks attributes, including calculated.

property frequency

classmethod from_dict(data_dict, identifier='0')
Initialize Peaks from dict.

Parameters

• data_dict (dict) – Of the form {“frequency”:freq, “velocity”:vel, “kwarg1”: kwarg1}
where freq is a list of floats denoting frequency values. vel is a list of floats denoting velocity
values. kwarg1 is an optional keyword argument denoting some additional parameter (may
include more than one).

• identifiers (str) – String to uniquely identify the provided Peaks object.

Returns
Peaks – Initialized Peaks instance.

classmethod from_json(fname)
Read Peaks from json file.

Parameters
fnames (str) – Name of the input file, may contain a relative or the full path.

Returns
Peaks – Initialized Peaks object.

classmethod from_max(fname, wavetype='rayleigh')
Initialize a Peaks object from a .max file.

Parameters

• fname (str) – Denotes the filename for the .max file, may include a relative or the full path.

1.2. API Reference 12

swprocess, Release 0.2.0

• wavetype ({‘rayleigh’, ‘love’}, optional) – Wavetype to extract from file, default is
‘rayleigh’.

Returns
Peaks – Initialized Peaks object.

Notes

If the results from multiple time windows are in the same .max file, as is most often the case, this method
ignores all but the first instance found.

property noise

plot(xtype='frequency', ytype='velocity', plot_kwargs=None, mask=None)
Plot dispersion data in Peaks object.

Parameters

• xtype ({‘frequency’, ‘wavelength’}, optional) – Denote whether the x-axis should be either
frequency or wavelength, default is frequency.

• ytype ({‘velocity’, ‘slowness’}, optional) – Denote whether the y-axis should be either
velocity or slowness, default is velocity.

• plot_kwargs (dict, optional) – Keyword arguments to pass along to ax.plot, default is None
indicating the predefined settings should be used.

• mask (ndarray, optional) – Boolean array mask to determine which points are to be plotted,
default is None so all valid points will be plotted.

Returns
tuple – Of the form (fig, ax) where fig and ax are the Figure and Axes objects which were
generated on-the-fly.

property power

reject_box_inside(xtype, xlims, ytype, ylims)
Reject peaks inside the stated limits.

Parameters

• xtype, ytype ({“frequency”, “velocity”, “slowness”, “wavelength”}) – Parameter domain
in which the limits are defined.

• xlims, ylims (tuple) – Tuple with the lower and upper limits for each of the boundaries.

Returns
None – Updates the Peaks object’s state.

reject_limits_outside(attr, limits)
Reject peaks outside the stated bounds.

Parameters

• attr ({“frequency”, “velocity”, “slowness”, “wavelength”}) – Parameter domain in which
the limits are defined.

• limits (tuple) – Tuple with the lower and upper limits. None may be used to perform one-
sided rejections. For example limits=(None, 5) will reject all values above 5 and limits=(5,
None) will reject all values below 5.

1.2. API Reference 13

swprocess, Release 0.2.0

Returns
None – Updates the Peaks object’s state.

Notes

This method is somewhat similar to swprocess.Peaks.reject_inside(), but is more computationally
expensive.

simplify_mpeaks(attr)
Produce desired attribute with multiple peaks removed.

Parameters
attr ({“frequency”, “velocity”, “azimuth”, “power”, “ellipticity”, “noise”}) – Attribute of
interest.

Returns
ndarray – With the attribute of interest simplified to remove duplicate peaks.

property slowness

to_json(fname, append=False)
Write Peaks to json file.

Parameters

• fname (str) – Output file name, can include a relative or the full path.

• append (bool, optional) – Controls whether fname (if it exists) should be appended to or
overwritten, default is False indicating fname will be overwritten.

Returns
None – Instead writes file to disk.

property velocity

property wavelength

property wavenumber

1.2.6 peakssuite

PeaksSuite class definition.

class PeaksSuite(peaks)
Bases: object

__init__(peaks)
Instantiate a PeaksSuite object from a Peaks object.

Parameters
peaks (Peaks) – A Peaks object to include in the suite.

Returns
PeaksSuite – Instantiated PeaksSuite object.

1.2. API Reference 14

swprocess, Release 0.2.0

append(peaks)
Append a Peaks object to PeaksSuite.

Parameters
peaks (Peaks) – A Peaks object to include in the suite.

Returns
None – Appends Peaks to PeaksSuite.

static calc_resolution_limits(xtype, attribute, ytype, limits, xs, ys)
Calculate resolution limits for a variety of domains.

classmethod from_dict(dicts)
Instantiate PeaksSuite from list of dict.

Parameters
dicts (list of dict or dict) – List of dict or a single dict containing dispersion data.

Returns
PeaksSuite – Instantiated PeaksSuite object.

classmethod from_json(fnames)
Instantiate PeaksSuite from json file(s).

Parameters
fnames (list of str or str) – File name or list of file names containing dispersion data. Names
may contain a relative or the full path.

Returns
PeaksSuite – Instantiated PeaksSuite object.

classmethod from_max(fnames, wavetype='rayleigh')
Instantiate PeaksSuite from .max file(s).

Parameters

• fnames (list of str or str) – File name or list of file names containing dispersion data. Names
may contain a relative or the full path.

• wavetype ({‘rayleigh’, ‘love’}, optional) – Wavetype to extract from file, default is
‘rayleigh’.

Returns
Peaks – Initialized PeaksSuite object.

classmethod from_peaks(peaks)
Instantiate PeaksSuite from iterable of Peaks.

Parameters
peaks (iterable) – Iterable containing Peaks objects.

Returns
PeaksSuite – Instantiated PeaksSuite object.

classmethod from_peakssuite(peakssuites)
Instantiate PeaksSuite from iterable of PeaksSuite.

Parameters
peakssuites (iterable) – Iterable containing PeaksSuite objects.

Returns
PeaksSuite – Instantiated PeaksSuite object.

1.2. API Reference 15

swprocess, Release 0.2.0

interactive_trimming(xtype='wavelength', ytype='velocity', plot_kwargs=None, resolution_limits=None,
resolution_limits_plot_kwargs=None, margins=0.1)

Interactively trim experimental dispersion data.

Parameters

• xtype ({‘frequency’, ‘wavelength’}, optional) – Denote whether the x-axis should be either
frequency or wavelength, default is frequency.

• ytype ({‘velocity’, ‘slowness’}, optional) – Denote whether the y-axis should be either
velocity or slowness, default is velocity.

• plot_kwargs (dict, optional) – Keyword arguments to pass along to ax.plot can be in
the form plot_kwargs = {“key”:value_allpeaks} or plot_kwargs = {“key”:[value_peaks0,
value_peaks1, . . .]}, default is None indicating the predefined settings should be used.

• resolution_limits (iterable, optional) – Of form (“domain”, (min, max)) where “domain”
is a str denoting the domain of the limits and min and max are floats denoting their value,
default is None so no resolution limits are plotted for reference.

• resolution_limits_plot_kwargs (dict, optional) – Formatting of resolution limits passed
to ax.plot, default is None so default settings will be used.

Returns
None – Updates the PeaksSuite state.

plot(xtype='frequency', ytype='velocity', ax=None, plot_kwargs=None, mask=None)
Plot dispersion data in Peaks object.

Parameters

• xtype ({‘frequency’, ‘wavelength’}, optional) – Denote whether the x-axis should be either
frequency or wavelength, default is frequency.

• ytype ({‘velocity’, ‘slowness’}, optional) – Denote whether the y-axis should be either
velocity or slowness, default is velocity.

• ax (Axes, optional) – Axes object on which to plot the disperison peaks, default is None so
Axes will be generated on-the-fly.

• plot_kwargs (dict, optional) – Keyword arguments to pass along to ax.plot can be in
the form plot_kwargs = {“key”:value_allpeaks} or plot_kwargs = {“key”:[value_peaks0,
value_peaks1, . . .]}, default is None indicating the predefined settings should be used.

• mask (list of ndarray, optional) – Boolean array mask for each Peaks object in the
PeaksSuite to control which points will be plotted, default is None so no mask is applied.

Returns
None or tuple – None if ax is provided, otherwise tuple of the form (fig, ax) where fig is the
figure handle and ax is the axes handle.

static plot_resolution_limits(ax, xtype, ytype, attribute, limits, plot_kwargs=None)
Plot resolution limits on provided Axes.

Parameters

• ax (Axes) – Axes on which resolution limit is to be plotted.

• xtype ({“frequency”, “wavelength”}) – Attribute on x-axis.

• ytype ({“velocity”, “slowness”, “wavenumber”}) – Attribute on y-axis.

• limits (tuple) – Of the form (lower limit, upper limit).

1.2. API Reference 16

swprocess, Release 0.2.0

• plot_kwargs (dict, optional) – Keyword arguments to pass along to ax.plot, default is None
indicating the predefined settings should be used.

Returns
None – Updates Axes with resolution limit (if possible).

plot_statistics(ax, xx, mean, stddev, errorbar_kwargs=None)

reject_box_inside(xtype, xlims, ytype, ylims)
Reject peaks inside the stated limits.

Parameters

• xtype, ytype ({“frequency”, “velocity”, “slowness”, “wavelength”}) – Parameter domain
in which the limits are defined.

• xlims, ylims (tuple) – Tuple with the lower and upper limits for each of the boundaries.

Returns
None – Updates the PeaksSuite internal state.

reject_limits_outside(attribute, limits)
Reject peaks outside the stated limits.

Parameters

• attr ({“frequency”, “velocity”, “slowness”, “wavelength”}) – Parameter domain in which
the limits are defined.

• limits (tuple) – Tuple with the lower and upper limits. None may be used to perform one-
sided rejections. For example limits=(None, 5) will reject all values above 5 and limits=(5,
None) will reject all values below 5.

Returns
None – Updates the PeaksSuite internal state.

statistics(xtype, ytype, xx, ignore_corr=True, drop_sample_if_fewer_count=3, mean_substitution=False)
Determine the statistics of the PeaksSuite.

Parameters

• xtype ({“frequency”,”wavelength”}) – Axis along which to calculate statistics.

• ytype ({“velocity”, “slowness”}) – Axis along which to define uncertainty.

• xx (iterable) – Values in xtype units where statistics are to be calculated.

• ignore_corr (bool, optional) – Ignore calculation of data’s correlation coefficients, default
is True.

• drop_sample_if_fewer_count (int, optional) – Remove statistic sample if the number of
valid entries is fewer than the specified number, default is 3.

Returns
tuple – Of the form (xx, mean, std, corr) where mean and std are the mean and standard
deviation at each point and corr are the correlation coefficients between every point and all
other points.

to_array(xtype, ytype, xx)
Create an array representation of the PeaksSuite.

Parameters

• xtype ({“frequency”,”wavelength”}) – Axis along which to define samples.

1.2. API Reference 17

swprocess, Release 0.2.0

• ytype ({“velocity”, “slowness”}) – Axis along which to define values.

• xx (iterable) – Values, in the units of xtype, where PeaksSuite is to be discretized.

Returns
tuple – Of the form (xx, array) where xx is the discretized values and array is a two-
dimensional array with one row per Peaks in the PeaksSuite and one column for each entry
of xx. Missing values are denoted with np.nan.

to_json(fname)
Write PeaksSuite to json file.

Parameters
fname (str) – Name of the output file, may contain a relative or the full path.

Returns
None – Write json to disk.

1.2.7 regex

Regular expression definitions.

get_all(wavetype='rayleigh', time='(\\d+\\.?\\d*)')
Compile regular expression to identify peaks from a .max file.

Parameters

• wavetype ({‘rayleigh’, ‘love’, ‘vertical’, ‘radial’, ‘transverse’}, optional) – Define a specific
wavetype to extract, default is ‘rayleigh’.

• time (str, optional) – Define a specific time of interest, default is “(d+.?d*)”), a generic
regular expression which will match all time.

Returns
Compiled Regular Expression – To identify peaks from a .max file.

get_nmaxima()

get_peak_from_max(time='\\d+\\.?\\d*', frequency='-?\\d+.?\\d*[eE]?[+-]?\\d*', wavetype='rayleigh')
Compile regular expression to extract peaks from a .max file.

Parameters

• wavetype ({‘rayleigh’, ‘love’, ‘vertical’, ‘radial’, ‘transverse’}, optional) – Define a specific
wavetype to extract, default is ‘rayleigh’.

• time (str, optional) – Define a specific time of interest, default is “(d+.?d*)”), a generic
regular expression which will match all time.

Returns
Compiled Regular Expression – To extract peaks from a .max file.

get_spac_ratio(time='(-?\\d+.?\\d*[eE]?[+-]?\\d*)', component='(0)', ring='(\\d+)')
TODO (jpv): Finish docstring.

Parameters

• component ({“0”, “1”, “2”}, optional) – Component vertical=”0”, radial=”1”, and trans-
verse=”2” to be read, default is “0”.

• ring (str) – Desired ring, default is “d+” so all rings will be exported.

1.2. API Reference 18

swprocess, Release 0.2.0

Returns
Compiled regular expression – To read lines from SPAC-style .max file.

get_spac_ring()

Find all rings in MSPAC .log file. TODO (jpv): Finish docstring.

1.2.8 register

Registry class definition.

class AbstractRegistry

Bases: ABC

classmethod create_class(name)

classmethod create_instance(name, *args, **kwargs)

classmethod register(name)
Register a virtual subclass of an ABC.

Returns the subclass, to allow usage as a class decorator.

class MaswWorkflowRegistry

Bases: AbstractRegistry

class WavefieldTransformRegistry

Bases: AbstractRegistry

1.2.9 sensor1c

Sensor1C class definition.

class Sensor1C(amplitude, dt, x, y, z, nstacks=1, delay=0)
Bases: ActiveTimeSeries

Class for single component sensor objects.

__init__(amplitude, dt, x, y, z, nstacks=1, delay=0)
Initialize Sensor1C.

classmethod from_activetimeseries(activetimeseries, x, y, z)

classmethod from_sensor1c(sensor1c)
Create deep copy of an existing Sensor1C object.

classmethod from_trace(trace, read_header=True, map_x=<function Sensor1C.<lambda>>,
map_y=<function Sensor1C.<lambda>>, nstacks=1, delay=0, x=0, y=0, z=0)

Create a Sensor1C object from a Trace object.

Parameters

• trace (Trace) – Trace object with attributes data and stats.delta.

• read_header (bool) – Flag to indicate whether the data in the header of the file should be
parsed, default is True indicating that the header data will be read.

• map_x, map_y (function, optional) – Convert x and y coordinates using some function,
default is not transformation. Can be useful for converting between coordinate systems.

1.2. API Reference 19

swprocess, Release 0.2.0

• nstacks (int, optional) – Number of stacks included in the present trace, default is 1 (i.e.,
no stacking). Ignored if read_header=True.

• delay (float, optional) – Pre-trigger delay in seconds, default is 0 seconds. Ignored if
read_header=True.

• x, y, z (float, optional) – Receiver’s relative position in x, y, and z, default is zero for all
components (i.e., the origin). Ignored if read_header=True.

Returns
Sensor1C – An initialized Sensor1C object.

Raises
ValueError – If trace type cannot be identified.

property x

property y

property z

1.2.10 snr

SignaltoNoiseRatio class definition.

class SignaltoNoiseRatio(frequencies, snr)
Bases: object

classmethod from_array1ds(signal, noise, fmin=3, fmax=75, pad_snr=False, df_snr=None)

1.2.11 source

This file contains the Source class for storing information on the type and location of an active-source.

class Source(x, y, z)
Bases: object

A Source class for storing information about an active-source.

__init__(x, y, z)
Initialize a Source class object.

Parameters
x, y, z (float) – Source position in terms of x, y, and z all in meters.

Returns
Source – Initialized Source object.

classmethod from_source(other)

property x

property y

property z

1.2. API Reference 20

swprocess, Release 0.2.0

class SourceWithSignal(x, y, z, amp, dt)
Bases: Source, TimeSeries

Contains source position and signal information.

__init__(x, y, z, amp, dt)
Create from spatial and signal information.

Parameters

• x, y, z (float) – Source position in terms of x, y, and z all in meters.

• amp (interable of floats) – Amplitude of source signal.

• dt (float) – Time step in seconds.

Returns
Source – Initialized Source object.

1.2.12 spaccurve

1.2.13 spaccurvesuite

1.2.14 utils

Surface wave processing utilities.

extract_mseed(startend_fname, network, data_dir='./', output_dir='./', extension='mseed')
Extract specific time blocks from a set of miniseed files.

Reads a large set of miniseed files, trims out specified time block(s), and writes the trimmed block(s) to disk.
Useful for condensing a large dataset consisting of miniseed files written at the end of each hour to a single file
that spans several hours. Stations which share an array name will appear in a common directory.

Parameters

• startend_fname (str) – Name of .csv file with start and end times. An example file is pro-
vided here

• network (str) – Short string of characters to identify the network. Exported files will utilize
this network code as its prefix.

• data_dir (str, optional) – The full or a relative file path to the directory containing the
miniseed files, default is the current directory.

• output_dir (str, optional) – The full or a relative file path to the location to place the output
miniseed files, default is the current directory.

• extension ({“mseed”, “miniseed”}, optional) – Extension used for miniSEED format, de-
fault is “mseed”.

Returns
None – Writes folder and files to disk.

1.2. API Reference 21

https://github.com/jpvantassel/swprocess/blob/main/examples/extract/extract_startandend.csv

swprocess, Release 0.2.0

1.2.15 wavefieldtransforms

Wavefield transform class definitions.

class AbstractWavefieldTransform(frequencies, velocities, power)
Bases: ABC

Wavefield transformation of an Array1D.

__init__(frequencies, velocities, power)
Define AbstractWavefieldTransform.

find_peak_power(by='frequency-maximum', **kwargs)
Find maximum WavefieldTransform power.

Parameters

• by ({“frequency-maximum”, “find_peaks”}, optional) – Determines how the maximum
surface wave dispersion power is selected, default is ‘frequency-maximum’. frequency-
maximum as the name indicates simply returns the single maximum power point’s velocity
at each frequency. find_peaks uses the function by the same name from the scipy package,
keyword arguments can be entered as kwargs.

• kwargs (kwargs, optional) – Keyword arguments, different for each search method.

Returns
ndarray – Containing the peak velocity at each frequency.

classmethod from_array(array, settings)

normalize(by='frequency-maximum')
Normalize WavefieldTransform power.

Parameters
by ({“none”, “absolute-maximum”, “frequency-maximum”}, optional) – Determines how
the surface wave dispersion power is normalized, default is ‘frequency-maximum’.

Returns
None – Update the internal state of power.

plot(fig=None, ax=None, cax=None, normalization='frequency-maximum', peaks='frequency-maximum',
nearfield=None, cmap='jet', peak_kwargs=None, colorbar_kwargs=None, rasterize=False)

Plot the WavefieldTransform’s dispersion image.

Parameters

• ax (Axes, optional) – Axes object on which to plot the dispersion image, default is None so
an Axes will be created on-the-fly.

• cax (Axes, optional) – Axes object on which to plot the colorbar for the disperison image,
default is None so an Axes will be created from ax.

• normalization ({“none”, “absolute-maximum”, “frequency-maximum”}, optional) – De-
termines how the surface wave dispersion power is normalized, default is ‘frequency-
maximum’.

• peaks ({“none”, “frequency-maximum”}, optional) – Determines if the spectral peaks are
shown and if so how they will be determined, default is ‘frequency-maximum’.

• nearfield (int, optional) – Number of array center distances per wavelength following Yoon
and Rix (2009), default is None so nearfield criteria will not be plotted. A value of 1
corresponds to ~15% error and 2 ~5% error.

1.2. API Reference 22

swprocess, Release 0.2.0

• peak_kwargs (dict, optional) – Keyword arguments to control the appearance of the spec-
tral peaks, default is None so the default settings will be used.

Returns
tuple or None – tuple of the form (fig, ax) if ax=None, None otherwise.

plot_snr(ax=None, plot_kwargs=None)

abstract classmethod transform()

A decorator indicating abstract classmethods.

Similar to abstractmethod.

Usage:

class C(metaclass=ABCMeta):
@abstractclassmethod def my_abstract_classmethod(cls, . . .):

. . .

‘abstractclassmethod’ is deprecated. Use ‘classmethod’ with ‘abstractmethod’ instead.

class EmptyWavefieldTransform(frequencies, velocities, power)
Bases: AbstractWavefieldTransform

classmethod from_array(array, settings)

stack(other)

classmethod transform(array, velocities, settings)
Empty transform method.

class FDBF(frequencies, velocities, power)
Bases: AbstractWavefieldTransform

classmethod transform(array, velocities, settings)
Perform Frequency-Domain Beamforming.

Parameters

• array (Array1D) – Instance of Array1D.

• velocities (ndarray) – Vector of trial velocities.

• settings (dict) – dict with processing settings.

Returns
tuple – Of the form (frequencies, power).

class FK(frequencies, velocities, power)
Bases: FDBF

classmethod from_array(array, settings)

class PhaseShift(frequencies, velocities, power)
Bases: AbstractWavefieldTransform

classmethod transform(array, velocities, settings)
Perform the Phase-Shift Transform.

Parameters

• array (Array1D) – Instance of Array1D.

1.2. API Reference 23

swprocess, Release 0.2.0

• velocities (ndarray) – Vector of trial velocities.

• settings (dict) – dict with processing settings.

Returns
tuple – Of the form (frequencies, power).

class SlantStack(frequencies, velocities, power)
Bases: AbstractWavefieldTransform

classmethod slant_stack(array, velocities)
Perform a slant-stack on the given wavefield data.

Parameters

• array (Array1d) – One-dimensional array object.

• velocities (ndarray) – One-dimensional array of trial velocities.

Returns
tuple – Of the form (tau, slant_stack) where tau is an ndarray of the attempted intercept times
and slant_stack are the slant-stacked waveforms.

classmethod transform(array, velocities, settings)
Perform the Slant-Stack transform.

Parameters

• array (Array1D) – Instance of Array1D.

• velocities (ndarray) – Vector of trial velocities.

• settings (dict) – dict with processing settings.

Returns
tuple – Of the form (frequencies, power).

1.3 License Information

Copyright (C) 2020 Joseph P. Vantassel (joseph.p.vantassel@gmail.com)

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, either version 3 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see
<https: //www.gnu.org/licenses/>.

1.3. License Information 24

mailto:joseph.p.vantassel@gmail.com
https://www.gnu.org/licenses/

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

25

PYTHON MODULE INDEX

s
swprocess.activetimeseries, 2
swprocess.array1d, 5
swprocess.masw, 9
swprocess.maswworkflows, 10
swprocess.peaks, 11
swprocess.peakssuite, 14
swprocess.regex, 18
swprocess.register, 19
swprocess.sensor1c, 19
swprocess.snr, 20
swprocess.source, 20
swprocess.spaccurve, 21
swprocess.spaccurvesuite, 21
swprocess.utils, 21
swprocess.wavefieldtransforms, 22

26

INDEX

Symbols
__init__() (AbstractMaswWorkflow method), 10
__init__() (AbstractWavefieldTransform method), 22
__init__() (ActiveTimeSeries method), 2
__init__() (Array1D method), 5
__init__() (Peaks method), 11
__init__() (PeaksSuite method), 14
__init__() (Sensor1C method), 19
__init__() (Source method), 20
__init__() (SourceWithSignal method), 21
__init__() (TimeDomainXcorrMaswWorkflow

method), 11

A
AbstractMaswWorkflow (class in swpro-

cess.maswworkflows), 10
AbstractRegistry (class in swprocess.register), 19
AbstractWavefieldTransform (class in swpro-

cess.wavefieldtransforms), 22
ActiveTimeSeries (class in swpro-

cess.activetimeseries), 2
append() (PeaksSuite method), 14
Array1D (class in swprocess.array1d), 5
Array1DwSource (class in swprocess.array1d), 8
array_center_distance (Array1D property), 5
auto_pick_first_arrivals() (Array1D method), 5
axes_defaults (Peaks attribute), 12
azimuth (Peaks property), 12

C
calc_resolution_limits() (PeaksSuite static

method), 15
calculate_snr() (AbstractMaswWorkflow method), 10
check() (AbstractMaswWorkflow method), 10
create_class() (AbstractRegistry class method), 19
create_instance() (AbstractRegistry class method),

19
create_settings_dict() (Masw static method), 9
crosscorr() (ActiveTimeSeries static method), 2
crosscorr_shift() (ActiveTimeSeries static method),

3

D
delay (ActiveTimeSeries property), 3
detrend() (AbstractMaswWorkflow method), 10
df (ActiveTimeSeries property), 3

E
ellipticity (Peaks property), 12
EmptyWavefieldTransform (class in swpro-

cess.wavefieldtransforms), 23
extended_attrs (Peaks property), 12
extract_mseed() (in module swprocess.utils), 21

F
FDBF (class in swprocess.wavefieldtransforms), 23
find_peak_power() (AbstractWavefieldTransform

method), 22
FK (class in swprocess.wavefieldtransforms), 23
frequency (Peaks property), 12
FrequencyDomainMaswWorkflow (class in swpro-

cess.maswworkflows), 11
from_activetimeseries() (ActiveTimeSeries class

method), 3
from_activetimeseries() (Sensor1C class method),

19
from_array() (AbstractWavefieldTransform class

method), 22
from_array() (EmptyWavefieldTransform class

method), 23
from_array() (FK class method), 23
from_array1d() (Array1D class method), 5
from_array1ds() (SignaltoNoiseRatio class method),

20
from_cross_stack() (ActiveTimeSeries class method),

3
from_dict() (Peaks class method), 12
from_dict() (PeaksSuite class method), 15
from_files() (Array1D class method), 5
from_files() (Array1DwSource class method), 8
from_json() (Peaks class method), 12
from_json() (PeaksSuite class method), 15
from_max() (Peaks class method), 12
from_max() (PeaksSuite class method), 15

27

swprocess, Release 0.2.0

from_peaks() (PeaksSuite class method), 15
from_peakssuite() (PeaksSuite class method), 15
from_sensor1c() (Sensor1C class method), 19
from_source() (Source class method), 20
from_trace() (ActiveTimeSeries class method), 3
from_trace() (Sensor1C class method), 19
from_trace_seg2() (ActiveTimeSeries class method), 4

G
get_all() (in module swprocess.regex), 18
get_nmaxima() (in module swprocess.regex), 18
get_peak_from_max() (in module swprocess.regex), 18
get_spac_ratio() (in module swprocess.regex), 18
get_spac_ring() (in module swprocess.regex), 19

I
interactive_mute() (Array1D method), 6
interactive_trimming() (PeaksSuite method), 15
is_similar() (Array1D method), 6

K
kres (Array1D property), 6

M
manual_pick_first_arrivals() (Array1D method),

6
Masw (class in swprocess.masw), 9
MaswWorkflowRegistry (class in swprocess.register),

19
MaswXcorr (class in swprocess.masw), 9
module

swprocess.activetimeseries, 2
swprocess.array1d, 5
swprocess.masw, 9
swprocess.maswworkflows, 10
swprocess.peaks, 11
swprocess.peakssuite, 14
swprocess.regex, 18
swprocess.register, 19
swprocess.sensor1c, 19
swprocess.snr, 20
swprocess.source, 20
swprocess.spaccurve, 21
swprocess.spaccurvesuite, 21
swprocess.utils, 21
swprocess.wavefieldtransforms, 22

multiple (ActiveTimeSeries property), 4
mute() (AbstractMaswWorkflow method), 10
mute() (Array1D method), 6

N
n_stacks (ActiveTimeSeries property), 4
nchannels (Array1D property), 6

noise (Peaks property), 13
normalize() (AbstractWavefieldTransform method), 22
nstacks (ActiveTimeSeries property), 4

O
offsets (Array1D property), 6

P
pad() (AbstractMaswWorkflow method), 10
Peaks (class in swprocess.peaks), 11
PeaksSuite (class in swprocess.peakssuite), 14
PhaseShift (class in swprocess.wavefieldtransforms), 23
plot() (AbstractWavefieldTransform method), 22
plot() (Array1D method), 6
plot() (Peaks method), 13
plot() (PeaksSuite method), 16
plot_resolution_limits() (PeaksSuite static

method), 16
plot_snr() (AbstractWavefieldTransform method), 23
plot_statistics() (PeaksSuite method), 17
position() (Array1D method), 7
power (Peaks property), 13

R
register() (AbstractRegistry class method), 19
reject_box_inside() (Peaks method), 13
reject_box_inside() (PeaksSuite method), 17
reject_limits_outside() (Peaks method), 13
reject_limits_outside() (PeaksSuite method), 17
run() (AbstractMaswWorkflow method), 10
run() (FrequencyDomainMaswWorkflow method), 11
run() (Masw static method), 9
run() (MaswXcorr static method), 9
run() (SingleMaswWorkflow method), 11
run() (TimeDomainWorkflow method), 11
run() (TimeDomainXcorrMaswWorkflow method), 11

S
select_noise() (AbstractMaswWorkflow method), 10
select_signal() (AbstractMaswWorkflow method), 10
Sensor1C (class in swprocess.sensor1c), 19
SignaltoNoiseRatio (class in swprocess.snr), 20
simplify_mpeaks() (Peaks method), 14
SingleMaswWorkflow (class in swpro-

cess.maswworkflows), 11
slant_stack() (SlantStack class method), 24
SlantStack (class in swprocess.wavefieldtransforms), 24
slowness (Peaks property), 14
Source (class in swprocess.source), 20
SourceWithSignal (class in swprocess.source), 20
spacing (Array1D property), 7
stack() (EmptyWavefieldTransform method), 23
stack_append() (ActiveTimeSeries method), 4

Index 28

swprocess, Release 0.2.0

statistics() (PeaksSuite method), 17
swprocess.activetimeseries

module, 2
swprocess.array1d
module, 5

swprocess.masw
module, 9

swprocess.maswworkflows
module, 10

swprocess.peaks
module, 11

swprocess.peakssuite
module, 14

swprocess.regex
module, 18

swprocess.register
module, 19

swprocess.sensor1c
module, 19

swprocess.snr
module, 20

swprocess.source
module, 20

swprocess.spaccurve
module, 21

swprocess.spaccurvesuite
module, 21

swprocess.utils
module, 21

swprocess.wavefieldtransforms
module, 22

T
time (ActiveTimeSeries property), 4
TimeDomainMaswWorkflow (class in swpro-

cess.maswworkflows), 11
TimeDomainWorkflow (class in swpro-

cess.maswworkflows), 11
TimeDomainXcorrMaswWorkflow (class in swpro-

cess.maswworkflows), 11
timeseriesmatrix() (Array1D method), 7
to_array() (PeaksSuite method), 17
to_file() (Array1D method), 7
to_json() (Peaks method), 14
to_json() (PeaksSuite method), 18
transform() (AbstractWavefieldTransform class

method), 23
transform() (EmptyWavefieldTransform class method),

23
transform() (FDBF class method), 23
transform() (PhaseShift class method), 23
transform() (SlantStack class method), 24
trim() (ActiveTimeSeries method), 4
trim() (Array1D method), 7

trim_offsets() (AbstractMaswWorkflow method), 10
trim_offsets() (Array1D method), 7
trim_time() (AbstractMaswWorkflow method), 10

V
velocity (Peaks property), 14

W
waterfall() (Array1D method), 7
WavefieldTransformRegistry (class in swpro-

cess.register), 19
wavelength (Peaks property), 14
wavenumber (Peaks property), 14

X
x (Sensor1C property), 20
x (Source property), 20
xcorrelate() (Array1DwSource method), 9

Y
y (Sensor1C property), 20
y (Source property), 20

Z
z (Sensor1C property), 20
z (Source property), 20
zero_pad() (ActiveTimeSeries method), 4
zero_pad() (Array1D method), 8

Index 29

	Contents:
	Installation
	API Reference
	activetimeseries
	array1d
	masw
	maswworkflows
	peaks
	peakssuite
	regex
	register
	sensor1c
	snr
	source
	spaccurve
	spaccurvesuite
	utils
	wavefieldtransforms

	License Information

	Indices and tables
	Python Module Index
	Index

